Review Article| Volume 92, ISSUE 6, P1473-1491, November 2008

Download started.


Disease Emergence from Global Climate and Land Use Change

  • Jonathan A. Patz
    Corresponding author. Global Environmental Health, Center for Sustainability and the Global Environment (SAGE) Nelson Institute for Environmental Studies, University of Wisconsin (at Madison), 1710 University Avenue, Madison, WI 53726.
    Global Environmental Health, Center for Sustainability and the Global Environment (SAGE) Nelson Institute for Environmental Studies, University of Wisconsin (at Madison), 1710 University Avenue, Madison, WI 53726, USA

    Department of Population Health Sciences, University of Wisconsin (at Madison) 1710 University Avenue, Madison, WI 53726, USA
    Search for articles by this author
  • Sarah H. Olson
    Global Environmental Health, Center for Sustainability and the Global Environment (SAGE) Nelson Institute for Environmental Studies, University of Wisconsin (at Madison), 1710 University Avenue, Madison, WI 53726, USA

    Department of Population Health Sciences, University of Wisconsin (at Madison) 1710 University Avenue, Madison, WI 53726, USA
    Search for articles by this author
  • Christopher K. Uejio
    Global Environmental Health, Center for Sustainability and the Global Environment (SAGE) Nelson Institute for Environmental Studies, University of Wisconsin (at Madison), 1710 University Avenue, Madison, WI 53726, USA
    Search for articles by this author
  • Holly K. Gibbs
    Global Environmental Health, Center for Sustainability and the Global Environment (SAGE) Nelson Institute for Environmental Studies, University of Wisconsin (at Madison), 1710 University Avenue, Madison, WI 53726, USA
    Search for articles by this author
      Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Medical Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • IPCC
        Climate change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the IPCC.
        Cambridge University Press, Cambridge (UK)2007
        • Asner G.P.
        • Elmore A.J.
        • Olander L.P.
        • et al.
        Grazing systems, ecosystem responses, and global change.
        Ann Rev Environ Resour. 2004; 29: 261-299
        • Ramankutty N.
        • Foley J.A.
        Estimating historical changes in global land cover: croplands from 1700 to 1992.
        Global Bioeochemical Cycles. 1999; 13: 997-1027
        • McMichael A.
        • Campbell-Lendrum D.
        • Ebi K.
        • et al.
        Climate change and human health: risks and responses.
        WHO, Geneva (Switzerland)2003
        • McLellan S.L.
        • Hollis E.J.
        • Depas M.M.
        • et al.
        Distribution and fate of Escherichia coli in Lake Michigan following contamination with urban stormwater and combined sewer overflows.
        J Great Lakes Res. 2007; 33: 566-580
      1. Perciasepe R. Combined sewer overflows: where are we four years after adoption of the CSO control policy? Report of the Environmental Protection Agency, 1998.

      2. Rose JB, Simonds J. King County water quality assessment: assessment of public health impacts associated with pathogens and combined sewer overflows. Washington State Department of Natural Resources, 1998.

      3. Fisher GT, Katz BG. Urban stormwater runoff: selected background information and techniques for problem assessment with a Baltimore, Maryland, case study. 1988.

        • Morris R.D.
        • Naumova E.N.
        • Levin R.
        • et al.
        Temporal variation in drinking water turbidity and diagnosed gastroenteritis in Milwaukee.
        Am J Public Health. 1996; 86: 237-239
        • Schwartz J.
        • Levin R.
        • Hodge K.
        Drinking water turbidity and pediatric hospital use for gastrointestinal illness in Philadelphia.
        Epidemiology. 1997; 8: 615-620
        • Curriero F.C.
        • Patz J.A.
        • Rose J.B.
        • et al.
        The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948–1994.
        Am J Public Health. 2001; 91: 1194-1199
        • Hrudey S.E.
        • Payment P.
        • Huck P.M.
        • et al.
        A fatal waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne outbreaks in the developed world.
        Water Sci Technol. 2003; 47: 7-14
        • Schuster C.J.
        • Ellis A.G.
        • Robertson W.J.
        • et al.
        Infectious disease outbreaks related to drinking water in Canada, 1974–2001.
        Can J Public Health. 2005; 96: 254-258
        • Dwight R.H.
        • Semenza J.C.
        • Baker D.B.
        • et al.
        Association of urban runoff with coastal water quality in Orange County, California.
        Water Environ Res. 2002; 74: 82-90
        • Gerba C.
        • Rose J.
        • Haas C.
        • et al.
        Waterborne rotavirus: a risk assessment.
        Water Res. 1996; 30: 2929-2940
        • Wade T.J.
        • Pai N.
        • Eisenberg J.N.
        • et al.
        Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis.
        Environ Health Perspect. 2003; 111: 1102-1109
        • Colford Jr., J.M.
        • Wade T.J.
        • Schiff K.C.
        • et al.
        Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination.
        Epidemiology. 2007; 18: 27-35
        • McLellan S.L.
        • Salmore A.K.
        Evidence for localized bacterial loading as the cause of chronic beach closings in a freshwater marina.
        Water Res. 2003; 37: 2700-2708
        • Whitman R.L.
        • Nevers M.B.
        Foreshore sand as a source of Escherichia coli in nearshore water of a Lake Michigan beach.
        Appl Environ Microbiol. 2003; 69: 5555-5562
        • Ackerman D.
        • Weisberg S.B.
        Relationship between rainfall and beach bacterial concentrations on Santa Monica bay beaches.
        J Water Health. 2003; 1: 85-89
        • Olyphant G.A.
        • Whitman R.L.
        Elements of a predictive model for determining beach closures on a real time basis: the case of 63rd Street Beach Chicago.
        Environ Monit Assess. 2004; 98: 175-190
        • Mac Kenzie W.R.
        • Hoxie N.J.
        • Proctor M.E.
        • et al.
        A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply.
        N Engl J Med. 1994; 331: 161-167
        • Colwell R.R.
        Global climate and infectious disease: the cholera paradigm.
        Science. 1996; 274: 2025-2031
        • Koelle K.
        • Rodo X.
        • Pascual M.
        • et al.
        Refractory periods and climate forcing in cholera dynamics.
        Nature. 2005; 436: 696-700
        • Rodo X.
        • Pascual M.
        • Fuchs G.
        • Faruque A.S.
        • et al.
        ENSO and cholera: a non-stationary link related to climate change?.
        Proc Natl Acad Sci USA. 2002; 99: 12901-12906
        • Checkley W.
        • Epstein L.D.
        • Gilman R.H.
        • et al.
        Effect of El Nino and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children.
        Lancet. 2000; 355: 442-450
        • Kovats R.S.
        • Edwards S.J.
        • Hajat S.
        • et al.
        The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries.
        Epidemiol Infect. 2004; 132: 443-453
        • Bentham G.
        • Langford I.H.
        Climate change and the incidence of food poisoning in England and Wales.
        Int J Biometeorol. 1995; 39: 81-86
        • WHO
        The World Health Report 2002.
        WHO, Geneva (Switzerland)2002
        • Butt T.A.
        • McCarl B.A.
        • Angerer J.
        • et al.
        The economic and food security implications of climate change in Mali.
        Clim Change. 2005; 68: 355-378
        • Patz J.A.
        • Kovats R.S.
        Hotspots in climate change and human health.
        BMJ. 2002; 325: 1094-1098
      4. International Energy Agency. Biofuels for transport 2004.

        • Himmel M.E.
        • Ding S.Y.
        • Johnson D.K.
        • et al.
        Biomass recalcitrance: engineering plants and enzymes for biofuels production.
        Science. 2007; 315: 804-807
        • Fairless D.
        Biofuel: the little shrub that could—maybe.
        Nature. 2007; 449: 652-655
      5. United Nations-Energy. Sustainable bioenergy: a framework for decision makers. 2007.

        • Boddiger D.
        Boosting biofluel crops could threaten food security.
        Lancet. 2007; 370: 923-924
        • Naylor R.L.
        • Liska A.J.
        • Burke M.B.
        • et al.
        The ripple effect: biofuels, food security, and the environment.
        Environment. 2007; 49: 30-43
        • Fearnside P.M.
        Soybean cultivation as a threat to the environment in Brazil.
        Environ Conserv. 2001; 28: 23-38
        • Morton D.C.
        • DeFries R.S.
        • Shimabukuro Y.E.
        • et al.
        Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon.
        Proc Natl Acad Sci U S A. 2006; 103: 14637-14641
        • Koh L.P.
        • Wilcove D.S.
        Is oil palm agriculture really destroying tropical biodiversity?.
        Conserv Letts. 2008; 2: 1-5
      6. Gibbs HK, Johnston M, Foley JA, et al. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environmental Research Letters 3, in press.

        • Gubler D.J.
        • Reiter P.
        • Ebi K.L.
        • et al.
        Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases.
        Environ Health Perspect. 2001; 109: 223-233
        • CDC
        Malaria: topic home.
        (Available at:) (Accessed September 18, 2008)
        • Patz J.A.
        • Campbell-Lendrum D.
        • Holloway T.
        • et al.
        Impact of regional climate change on human health.
        Nature. 2005; 438: 310-317
        • Zhou G.
        • Minakawa N.
        • Githeko A.K.
        • et al.
        Climate variability and malaria epidemics in the highlands of East Africa.
        Trends Parasitol. 2005; 21: 54-56
        • Bouma M.J.
        • van der Kaay H.J.
        The El Nino Southern Oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics?.
        Trop Med Int Health. 1996; 1: 86-96
        • Thomson M.C.
        • Doblas-Reyes F.J.
        • Mason S.J.
        • et al.
        Malaria early warnings based on seasonal climate forecasts from multi-model ensembles.
        Nature. 2006; 439: 576-579
        • Bodker R.
        • Akida J.
        • Shayo D.
        • et al.
        Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania.
        J Med Entomol. 2003; 40: 706-717
        • Pascual M.
        • Ahumada J.A.
        • Chaves L.F.
        • et al.
        Malaria resurgence in East African highlands: temperature trends revisited.
        Proc Natl Acad Sci USA. 2006; 103: 5829-5834
        • Minakawa N.
        • Sonye G.
        • Mogi M.
        • et al.
        The effects of climatic factors on the distribution and abundance of malaria vectors in Kenya.
        J Med Entomol. 2002; 39: 833-841
        • Patz J.A.
        • Martens W.J.M.
        • Focks D.A.
        • et al.
        Dengue fever epidemic potential as projected by general circulation models of global climate change.
        Environ Health Perspect. 1998; 106: 147-153
        • Hopp M.J.
        • Foley J.A.
        Worldwide fluctuations in dengue fever cases related to climate variability.
        Clim Res. 2003; 25: 85-94
      7. Reisen WK, Fang Y, Martinez V. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 2006;43(2), in press.

        • Madder D.J.
        • Surgeoner G.A.
        • Helson B.V.
        Number of generations, egg production, and developmental time of Culex pipiens and Culex restauns (Diptera: Culicidae) in southern Ontario.
        J Med Entomol. 1983; 20: 275-287
        • Buth J.L.
        • Brust R.A.
        • Ellis R.A.
        Development time, oviposition activity and onset of diapause in Culex tarsalis, Culex restuans and Culiseta inornata in southern Manitoba.
        J Am Mosq Control Assoc. 1990; 6: 55-63
        • Rueda L.M.
        • Patel K.J.
        • Axtell R.C.
        • et al.
        Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae).
        J Med Entomol. 1990; 27: 892-898
        • Turell M.J.
        • O'Guinn M.L.
        • Dohm D.J.
        • et al.
        Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus.
        J Med Entomol. 2001; 38: 130-134
        • Dohm D.J.
        • O'Guinn M.L.
        • Turell M.J.
        Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus.
        J Med Entomol. 2002; 39: 221-225
        • McIntosh B.M.
        • Jupp P.G.
        • Dos Santos I.
        • et al.
        Epidemics of West Nile and Sindbis viruses in South Africa with Culex (Culex) univittatus Theobald as vector.
        S Afr J Sci. 1976; 72: 295-300
        • Jupp P.G.
        • McIntosh B.M.
        • Blackburn N.K.
        Experimental assessment of the vector competence of Culex (Culex) neavei Theobald with West Nile and Sindbis viruses in South Africa.
        Trans R Soc Trop Med Hyg. 1986; 80: 226-230
        • Platonov A.E.
        • Shipulin G.A.
        • Shipulina O.Y.
        • et al.
        Outbreak of West Nile virus infection, Volgograd Region, Russia, 1999.
        Emerg Infect Dis. 2001; 7: 128-132
        • Raddatz R.L.
        A biometeorological model of an encephalitis vector.
        Boundary Layer Meteorology. 1986; 34: 185-199
        • Day J.F.
        • Curtis G.A.
        Influence of rainfall on Culex nigripalpus (Diptera: Culicidae) blood-feeding behavior in Indian River County, Florida.
        Ann Entomol Soc Am. 1989; 82: 32-37
        • Andreadis T.G.
        • Anderson J.F.
        • Vossbrinck C.R.
        • et al.
        Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003.
        Vector Borne Zoonotic Dis Winter. 2004; 4: 360-378
        • Degaetano A.T.
        Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey.
        Int J Biometeorol. 2005; 49: 345-353
        • Landesman W.J.
        • Allan B.F.
        • Langerhans R.B.
        • et al.
        Inter-annual associations between precipitation and human incidence of West Nile virus in the United States.
        Vector Borne Zoonotic Dis Fall. 2007; 7: 337-343
        • Han L.L.
        • Popovici F.
        • Alexander Jr., J.P.
        • et al.
        Risk factors for West Nile virus infection and meningoencephalitis, Romania, 1996.
        J Infect Dis. 1999; 179: 230-233
        • Despommier D.D.
        West Nile story.
        Apple Trees Productions LLC, New York2001
        • Chase J.M.
        • Knight T.M.
        Drought-induced mosquito outbreaks in wetlands.
        Ecol Lett. 2003; 6: 1017-1024
        • Shaman J.
        • Day J.F.
        • Stieglitz M.
        Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida.
        J Med Entomol. 2005; 42: 134-141
        • Sergon K.
        • Njuguna C.
        • Kalani R.
        • et al.
        Seroprevalence of chikungunya virus (CHIKV) infection on Lamu Island, Kenya, October.
        Am J Trop Med Hyg. 2008; 78: 333-337
        • Chretien J.P.
        • Anyamba A.
        • Bedno S.A.
        • et al.
        Drought-associated Chikungunya emergence along coastal East Africa.
        Am J Trop Med Hyg. 2007; 76: 405-407
        • Rezza G.
        • Nicoletti L.
        • Angelini R.
        • et al.
        Infection with chikungunya virus in Italy: an outbreak in a temperate region.
        Lancet. 2007; 370: 1840-1846
        • Linthicum K.J.
        • Anyamba A.
        • Tucker C.J.
        • et al.
        Climate and satellite indicators to forecast Rift valley fever epidemics in Kenya.
        Science. 1999; 285: 397-400
        • Patz J.A.
        • Confalonieri U.E.C.
        • Amerasinghe F.
        • et al.
        Health: ecosystem regulation of infectious diseases.
        in: Reid W. Millennium ecosystem assessment series. ecosystems and human well-being: current state and trends. findings of the condition and trends working group. Island Press, Washington, DC2005
        • Ogden N.H.
        • Lindsay L.R.
        • Beauchamp G.
        • et al.
        Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field.
        J Med Entomol. 2004; 41: 622-633
        • Mccabe G.J.
        • Bunnell J.E.
        Precipitation and the occurrence of Lyme disease in the northeastern United States.
        Vector Borne Zoonotic Dis. 2004; 4 (SUM): 143-148
        • Brownstein J.S.
        • Holford T.R.
        • Fish D.
        A climate-based model predicts the spatial distribution of Lyme disease vector Ixodes scapularis in the United States.
        Environ Health Perspect. 2003; 111: 1152-1157
        • Ogden N.H.
        • Maarouf A.
        • Barker I.K.
        • et al.
        Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada.
        Int J Parasit. 2006; 36: 63-70
        • Glass G.E.
        • Cheek J.E.
        • Patz J.A.
        • et al.
        Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome.
        Emerg Infect Dis. 2000; 6: 238-247
        • Trevejo R.T.
        • Rigau-Perez J.G.
        • Ashford D.A.
        • et al.
        Epidemic leptospirosis associated with pulmonary hemorrhage—Nicaragua, 1995.
        J Infect Dis. 1998; 178: 1457-1463
        • Parmenter R.R.
        • Yadav E.P.
        • Parmenter C.A.
        • et al.
        Incidence of plague associated with increased winter-spring precipitation in New Mexico.
        Am J Trop Med Hyg. 1999; 61: 814-821
        • Stenseth N.C.
        • Samia N.I.
        • Viljugrein H.
        • et al.
        Plague dynamics are driven by climate variation.
        Proc Natl Acad Sci U S A. 2006; 103: 13110-13115
        • Purse B.V.
        • Mellor P.S.
        • Rogers D.J.
        • et al.
        Climate change and the recent emergence of bluetongue in Europe.
        Nat Rev Microbiol. 2005; 3: 171-181
        • Saegerman C.
        • Berkvens D.
        • Mellor P.S.
        Bluetongue epidemiology in the European Union.
        Emerg Infect Dis. 2008; 14: 539-544
        • Schmid K.A.
        • Ostfeld R.S.
        Biodiversity and the dilution effect in disease ecology.
        Ecology. 2001; 82: 609-619
      8. Hansen MC, Stehman SV, Potapov PV, et al. Humid tropical forest clearing from 2000 to 2005 quantified using multi-temporal and multi-resolution remotely sensed data. PNAS, in press.

        • Balmford A.
        • Green R.E.
        • Scharlemann J.P.W.
        Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production.
        Global Change Biol. 2005; 11: 1594-1605
        • Horrigan L.
        • Lawrence R.S.
        • Walker P.
        How sustainable agriculture can address the environmental and human health harms of industrial agriculture.
        Environ Health Perspect. 2002; 110: 445-456
        • Harb M.
        • Faris R.
        • Gad A.M.
        • et al.
        The resurgence of lymphatic filariasis in the Nile delta.
        Bull World Health Organ. 1993; 71: 49-54
        • Thompson D.F.
        • Malone J.B.
        • Harb M.
        • et al.
        Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile delta.
        Emerg Infect Dis. 1996; 2: 234-235
        • Straube E.
        • Straube W.
        • Kruger E.
        • et al.
        Disruption of male sex hormones with regard to pesticides: pathophysiological and regulatory aspects.
        Toxicol Lett. 1999; 107: 225-231
        • Population Reference Bureau
        World population data sheet, 1998.
        (Available at:) (Accessed September 18, 2008)
        • Knowlton K.
        Urban history, urban health.
        Am J Public Health. 2001; 91: 1944-1946
        • Singh J.
        • Jain D.
        • Bhatia R.
        • et al.
        Epidemiological characteristics of rabies in Delhi and surrounding areas, 1998.
        Indian Pediatr. 2001; 38: 1354-1360
        • Wolfe N.D.
        • Switzer W.M.
        • Carr J.K.
        • et al.
        Naturally acquired simian retrovirus infections in central African hunters.
        Lancet. 2004; 363: 932-937
        • Foley J.A.
        • DeFries R.
        • Asner G.P.
        • et al.
        Global consequences of land use.
        Science. 2005; 309: 570-574
        • Afrane Y.A.
        • Lawson B.W.
        • Githeko A.K.
        • et al.
        Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in western Kenya highlands.
        J Med Entomol. 2005; 42: 974-980
        • Lindblade K.A.
        • Walker E.D.
        • Onapa A.W.
        • et al.
        Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda.
        Trop Med Int Health. 2000; 5: 263-274
        • Munga S.
        • Minakawa N.
        • Zhou G.
        • et al.
        Association between land cover and habitat productivity of malaria vectors in western Kenyan highlands.
        Am J Trop Med Hyg. 2006; 74: 69-75
        • Tuno N.
        • Okeka W.
        • Minakawa N.
        • et al.
        Survivorship of Anopheles gambiae sensu stricto (Diptera: Culicidae) larvae in western Kenya highland forest.
        J Med Entomol. 2005; 42: 270-277
        • Vittor A.Y.
        • Gilman R.H.
        • Tielsch J.
        • et al.
        The effect of deforestation on the human-biting rate of Anopheles Darlingi, the primary vector of Falciparum malaria in the Peruvian Amazon.
        Am J Trop Med Hyg. 2006; 74: 3-11
        • Lebel J.
        • Mergler D.
        • Lucotte M.
        • et al.
        Evidence of early nervous system dysfunction in Amazonian populations exposed to low-levels of methylmercury.
        Neurotoxicology. 1996; 17 (Spring): 157-167
        • Lebel J.
        • Mergler D.
        • Branches F.
        • et al.
        Neurotoxic effects of low-level methylmercury contamination in the Amazonian Basin.
        Environ Res. 1998; 79: 20-32
        • Silbergeld E.K.
        • Nash D.
        • Trevant C.
        • et al.
        Mercury exposure and malaria prevalence among gold miners in Para, Brazil.
        Rev Soc Bras Med Trop. 2002; 35: 421-429

      Further readings

      1. Aron J.L. Patz J.A. Ecosystem change and public health: a global perspective. Johns Hopkins University Press, 2001
        • Foley J.A.
        • DeFries R.
        • Asner G.P.
        • et al.
        Global consequences of land use.
        Science. 2005; 309: 570-574
        • Haines A.
        • Patz J.A.
        Health effects of climate change.
        JAMA. 2004; 291: 99-103
        • Patz J.A.
        Climate change.
        in: Frumkin H. Environmental health: from global to local. John Wiley & Sons Inc., San Francisco (CA)2005
        • Patz J.A.
        • Daszak P.
        • Tabor G.M.
        • et al.
        Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence.
        Environ Health Perspect. 2004; 101: 1092-1098