Advertisement
Review Article| Volume 91, ISSUE 5, P963-1016, September 2007

Download started.

Ok

Future Approaches of Nanomedicine in Clinical Science

      Burgeoning applications of nanotechnology are altering practices in traditional medicine. Promoted by the National Institutes of Health, nanomedicinal research is advancing technologies and revolutionizing strategies in clinical science by providing easy access to innovative nanodevices and nanosystems based on the rational design and precise integration of functional nanomaterials. Many long-standing challenges in clinical science could be met through advancement and revolutionization. Nanomedicinal diagnostics could acquire critical information regarding the status of diseased tissues and organs quickly and inexpensively with minimal sampling size and invasion. New strategies in therapeutic and regenerative nanomedicines will enable clinicians to take actions in a timely fashion and patient-friendly manner.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Medical Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. National Science Foundation. National Nanotechnology Initiative: research and development FY 2002. Available at: www.nano.gov.

        • Koo O.M.
        • Rubinstein I.
        • Onyuksel H.
        Role of nanotechnology in targeted drug delivery and imaging: a concise review.
        Nanomedicine. 2005; 1: 193-212
        • Prow T.W.
        • Salazar Jose H.
        • et al.
        Nanomedicine-nanoparticles, molecular biosensors and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics.
        Proc Soc Photo Opt Instrum Eng. 2004; 5318: 1-11
        • Gareth Hughes A.
        Nanostructure-mediated drug delivery.
        Nanomedicine. 2005; 1: 22-30
        • Kannan S.
        • Kolhe P.
        • Raykova V.
        • et al.
        Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells.
        J Biomater Sci Polym Ed. 2004; 15: 311-330
        • Jevprasesphant R.
        • Penny J.
        • Attwood D.
        • et al.
        Transport of dendrimer nanocarriers through epithelial cells via the transcellular route.
        J Control Release. 2004; 97: 259-267
        • Paleos C.M.
        • Tsiourvas D.
        • Sideratou Z.
        • et al.
        Acid- and salt- triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system.
        Biomacromolecules. 2004; 5: 524-529
        • Koo O.
        • Rubinstein I.
        • Onyuksel H.
        Camptothecin in sterically stabilized phopholipid micelles: a novel nanomedicine.
        Nanomedicine. 2005; 1: 77-84
        • Ye Hsin-Chi
        • Ho Yi-Ping
        • Wang Tza-Huei
        Quantum dot-mediated biosensing assays for specific nucleic acid detection.
        Nanomedicine. 2005; 1: 115-121
        • Moghimi Moein S.
        • Hunter Christy A.
        • Murray Clifford J.
        Nanomedicine: current status and future prospects.
        FASEB J. 2005; 19: 311-330
        • Bulte Jeff W.M.
        Magnetic nanoparticles as markers for cellular MR imaging.
        Journal of Magnetism and Magnetic materials. 2005; 289: 423-427
        • Yeh Hsin-chih
        • Ho Ping-Yi
        • Wang Tza-Huei
        Quantum dot-mediated biosensiing asays for specific nucleic acid detection.
        Nanomedicine. 2005; 1: 115-121
        • Zhao W.
        • Lin W.
        • Tan W.
        Fluorenct Nanoparticles for Bactiria and DNA Detection in Bio-Applications of Nanoparticles.
        University of Toronto, Toronto (Canada)2007
        • Tyagi S.
        • Bratu D.P.
        • Kramer F.R.
        Multicolor molecular beacons for allele discrimination.
        Nat Biotechnol. 1998; 16: 49-53
        • Liang R.
        • Qiu J.
        • Cai P.
        A novel amperometric immunosensor based on three-dimensional sol-gel network and nanoparticle self-assemble technique.
        Analtica Chemic Acta. 2005; 534: 223-229
        • Xu H.X.
        • Sha M.Y.
        • Wong E.Y.
        • et al.
        Multiplexed SNP genotyping using the Qbead ™ system: a quantum dot-encoded microsphere-based assay.
        Nucleic Acids Res. 2003; 31: e43
        • Vaarno J.
        • Ylikoski E.
        • Meltola N.J.
        • et al.
        New separation-free assay technique for SNPs using two-photon excitation fluorophore.
        Nucleic Acids Res. 2004; 32: e108
        • Kawasaki Ernest S.
        • Player A.
        Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer?.
        Nanomedicine. 2005; 1: 101-109
        • Agrawal A.
        • Tripp Ralph A.
        • Anderson L.J.
        • et al.
        Real-time detectin of virus particles and viral protein expression with two-color nanoparticle probes.
        J Virol. 2005; 79: 8625-8628
        • Ijiima S.
        Helical microtubules of graphitic carbon.
        Nature. 1991; 354: 56
        • Kostarelos K.
        • Lacerda L.
        • Partidos C.D.
        • et al.
        Carbon nanotube-mediated delivery of peptides and genes to cells: translating nanobiotechnology to therapeutics.
        J Drug Del Sci Tech. 2005; 15: 41-47
        • Cui D.X.
        • Tian F.R.
        • Kong Y.
        • et al.
        Effects of single-walled carbon nanotubes on the polymerase chain reaction.
        Nanotechnology. 2004; 15: 154-157
        • Gooding J.J.
        • Wibowo R.
        • Liu J.
        • et al.
        Protein electrochemistry using aligned carbon nanotube arrays.
        JACS. 2003; 125: 9006-9007
        • Wang J.
        • Liu G.
        • Jan M.R.
        Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events.
        JACS. 2004; 126: 3010-3011
        • Callegari A.
        • Cosnier S.
        • Marcaccio M.
        • et al.
        Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometriic glucose biosensors.
        J Mater Chem. 2004; 14: 807-810
        • Gavalas V.G.
        • Law S.A.
        • Ball J.C.
        • et al.
        Carbon nanotube aqueous sol-gel composites:enzymefriendly platforms for the development of stable biosensors.
        Anal Biochem. 2004; 329: 247-252
        • Dai H.
        • Hafner J.H.
        • Rinzler G.
        • et al.
        Nanotubes as nanoprobes in scanning probe microscopy.
        Nature. 1996; 384: 147
        • De Heer W.A.
        • Chatelain A.
        • Ugarte D.
        A carbon nanotube field-emission electron source.
        Science. 1995; 270: 1179
        • Teker K.
        • Kousik S.
        • Eric W.
        • et al.
        Electronic sensing of antibodies using carbon nanotube devices.
        NSTI-Nanotech. 2005; 1: 43-46
        • Yu W.
        • Pirollo K.F.
        • Yu B.
        • et al.
        Enhanced transfection efficiency of a systemically delivered tumor-targeting immunolipoplex by inclusion of a pH-sensitive histidylated oligolysine peptide.
        Nucleic Acids Res. 2004; 32: e48
        • New RRC
        Liposomes: a practical approach.
        Oxford university Press, Oxford1990
        • Sdthi V.
        • Onyuksel H.
        • Rubinstein I.
        Liposomal vasoactive intestinal peptide.
        Meth Enzymol. 2005; 391: 377-395
        • Pain D.
        • Das P.K.
        • Ghosh P.C.
        • et al.
        Increased circulatory half-life of liposomes after conjugation with dextran.
        J Biosci. 1984; 6: 811-816
        • Allen T.M.
        • Chonn A.
        Large unilamellar liposomes with low uptake in to the reticuloendothelial system.
        FEBS Lett. 1987; 223: 42-46
        • Lasic D.D.
        • Martin F.J.
        • Gabizon A.
        • et al.
        Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times.
        Biocheim Biophys Acta. 1991; 1070: 187-192
        • Torchilin V.P.
        • Levchenko T.S.
        • Whitemman K.R.
        • et al.
        Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification.
        Biomaterials. 2001; 75: 3035-3044
        • Takeuchi H.
        • Kojima H.
        • Yamamoto H.
        • et al.
        Evaluation of circulation profiles of liipososmes coated with hydrophilic polymers having different molecular weights in rats.
        J Control Release. 2001; 75: 83-91
        • Bally M.B.
        • Nayar R.
        • Masin D.
        • et al.
        Liposomes with entrapped doxorubicin exhibit extended blood residence times.
        Biochim Biophys Acta. 1990; 1023: 133-139
        • Bekersky I.
        • Boswell G.W.
        • Hiles R.
        • et al.
        Safety and toxicokinetics of intravenous liposomal amphotericin B (AmBisome) in beagle dogs.
        Pharmacol Res. 1999; 16: 1694-1701
        • Salord J.
        • Tarnus C.
        • Muller C.D.
        • et al.
        Targeting of liposomes by covalent coupling with ecto-NAD+-glycohydrolase ligands.
        Biochim Biophys Acta. 1995; 1237: 99-108
        • Ahmad Farhan J.
        • Khar Roop K.
        Nanotechnology: a revolution in the making.
        The Pharma Review. 2005; 4: 49-56
        • Berry C.C.
        • Curtis A.S.G.
        Functionalisation of magnetic nanoparticles for applications in biomedicine.
        J Phys D Appl Phys. 2003; 36: 198-206
        • Freitas R.A.
        What is nanomedicine?.
        Nanomedicine. 2005; 1: 2-9
        • Woo K.
        • Hong J.
        Surface modification of hydrophobic iron oxide nanoparticles for clinical applications.
        IEEE Ttransactions On Magnetics. 2005; 41: 4137-4139
        • Prasad Paras N.
        Emerging opportunities at the interface of photonics, nanotechnology and biotechnology.
        Mol Cryst Liq. 2004; 1: 1-7
        • Vladimir P.Z.
        • Kim Jin-Woo
        • Curiel D.T.
        • et al.
        Self-assembling nanoclusterrs in living systems: application for integrated phototherrmal nanodiagnostics and nanaotherapy.
        Nanomedicine. 2005; 1: 326-345
      2. Keating CD. Nanoscience enables ultrasensitive detection of Alzheimer's biomarker. PNAS, 102, (7), 2263–2264.

        • Couvreur P.
        • Gruslain L.
        • Lenaerts V.
        • et al.
        Polymeric nanoparticles and microspheres.
        CRC Press, Boca Raton (FL)1986
        • Yang h
        • Lopina S.T.
        Penicillin V-conjugated PEG-PAMAM star polymers.
        J Biomater Sci Polym Ed. 2003; 14: 1043-1056
        • Quintana A.
        • Raczka E.
        • Piehler L.
        • et al.
        Design and function of a dendrimer-based therapeutic nanodevice targeted to tumo cells through the folate receptor.
        Pharmacol Res. 2002; 19: 1310-1316
        • Chauhan A.S.
        • Jain N.K.
        • Diwan P.V.
        • et al.
        Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats.
        J Drug Target. 2004; 12: 575-583
        • Lavan D.A.
        • Lynn D.M.
        • Langer R.
        Moving smaller in drug discovery and delivery.
        Nat Rev Drug Discov. 2002; 1: 77-84
        • Donaldson K.
        • Aitken R.
        • Tran L.
        • et al.
        Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety.
        Toxicolog Sci. 2006; 92: 5-22
        • Sargent T.
        The dance of molecules.
        Thunder's Mouth Press, New York2006
        • Tabata Y.
        Nanomaterials of drug delivery systems for tissue regeneration.
        Methods Mol Bio. 2005; 300: 81-100
        • Hardiingham T.
        Regional perspectives on tissue engineering—view from a small island.
        Tissue Eng. 2003; 9: 1063-1064
        • Langer R.
        • Vacanti J.P.
        Tissue engineering.
        Science. 1993; 260: 920-926
        • Langer R.S.
        • Vacanti J.P.
        Tissue engineering: the challenges ahead.
        Sci Am. 1999; 280: 86-89
        • Lysaght M.J.
        • Hazelhurst A.L.
        Tissue engineering: the end of the beginning.
        Tissue Eng. 2004; 10: 309-320
        • Williams D.J.
        • Sebastine I.M.
        Tissue engineering and regenerative medicine: manufacturing challenges.
        IEE Proc Nanobiotechnol. 2005; 152: 207-210
        • Griffith L.G.
        • Naughton G.
        Tissue engineering—current challenges and expanding opportunities.
        Science. 2002; 295: 1009
        • Lavik E.
        • Langer R.
        Tissue engineering: current state and perspectives.
        Appl Microbiol Biotechnol. 2004; 565: 1-8
        • Williams K.A.
        • Saini S.
        • Wick T.M.
        Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering.
        Biotechnol Prog. 2002; 18: 951-963
        • Roth E.A.
        • Xu T.
        • Das M.
        • et al.
        Inkjet printing for high-throughput cell patterning.
        Biomaterials. 2004; 25: 3707-3715
        • Sipe J.D.
        Tissue engineering and reparative medicine.
        Annals of the New York Academy of Sciences. 2002; 961: 1-9
        • Naughton G.K.
        From lab bench to market—critical issues in tissue engineering.
        Ann N Y Acad Sci. 2002; 961: 372-385
        • Haddon R.C.
        Carbon Nanotubes.
        Acc Chem Res. 2002; 36: 997
        • Xia Y.N.
        • Yang P.D.
        • Sun Y.G.
        • et al.
        One-dimensional nanostructures: synthesis, characterization, and applications.
        Adv Mater. 2003; 15: 353-389
        • Shimizu T.
        • Masuda M.
        • Minamikawa H.
        Supramolecular nanotube architectures based on amphiphilic molecules.
        Chem Rev. 2005; 105: 1401-1443
        • Gao X.Y.
        • Matsui H.
        Peptide-Based Nanotubes and their applications in bionanotechnology.
        Adv Mater. 2005; 17: 2037-2050
      3. F Cerrina, C Marrian, A path to nanolithography. MRS Bull, 1996;21:56.

        • Matsui S.
        • Ochiai Y.
        Focused ion beam applications to solid state devices.
        Nanotechnology. 1996; 7: 247
        • Hong S.H.
        • Zhu J.
        • Mirkin C.A.
        Multiple ink nanolithography: toward a multiple-pen nano-plotter.
        Science. 1999; 286: 523
        • Bunker B.C.
        • Rieke P.C.
        • tarasevich B.J.
        • et al.
        Ceramic thin-film formation on functionalized interfaces through biomimetic processing.
        Science. 1994; 264: 48
        • Liu J.
        • Lin Y.H.
        • Liang L.
        • et al.
        Templateless assembly of molecularly aligned conductive polymer nanowires: a new approach for oriented nanostructures.
        Chemistry-A European Journal. 2003; 9: 605-611
        • Tian Z.R.
        • Voigt James A.
        • Jun Liu
        • et al.
        Complex and oriented ZnO nanostructures.
        Nat Mater. 2003; 2: 821-826
        • Hidber P.C.
        • Graule T.J.
        • Gauckler L.J.
        Citric acid: a dispersant for aqueous alumina suspensions.
        J Am Ceram Soc. 1996; 79: 1857-1867
        • Biggs S.
        • Scales P.J.
        • Leong Y.K.
        • et al.
        Effects of citrate adsorption on the interactions between zirconia surfaces.
        J Chem Soc Faraday Trans. 1995; 91: 2921-2928
        • Manna L.
        • Milliron D.J.
        • Meisel A.
        • et al.
        Controlled growth of tetrapod-branched inorganic nanocrystals.
        Nat Mater. 2003; 2: 382-385
        • Milliron D.J.
        • Hughes S.M.
        • Cui Y.
        • et al.
        Colloidal nanocrystals heterostructures with linear and branched topology.
        Nature. 2004; 430: 190-195
        • Kanaras A.G.
        • Sonnichsen C.
        • Liu H.T.
        • et al.
        Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures.
        Nano Lett. 2005; 5: 2164-2167
        • Hulliger J.
        Chemistry and crystal growth.
        Angew Chem Int Ed Engl. 1994; 33: 143
        • Wang Z.L.
        Nanostructures of zinc oxide.
        Mater Today. 2004; 7: 26-33
      4. Zhiyang Fan, Jia g lu, Zinc oxide Nanostructures: synthesis and properties. J Nanosci Nanotechnol 2005, 5, 1561–1573.

        • Vayssieres L.
        Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions.
        Adv Mater. 2003; 15: 464-466
        • Wang Z.
        • Qian X.F.
        • Yin J.
        • et al.
        Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route.
        Langmuir. 2004; 20: 3441-3448
        • Gao X.P.
        • Zheng Z.F.
        • Zhu H.Y.
        • et al.
        Rotor-like ZnO by epitaxial growth under hydrothermal conditions.
        Chem Commun. 2004; 12: 1428-1429
        • Liang J.B.
        • Liu J.W.
        • Xie Q.
        • et al.
        Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles.
        J Phys Chem. 2005; 109: 9463-9467
        • Tian Z.R.
        • Voigt J.A.
        • Liu J.
        • et al.
        Biomimetic arrays of oriented helical ZnO nanorods and columns.
        J Am Chem Soc. 2002; 124: 12954-12955
        • Sounart T.L.
        • Jun Liu
        • Voigt James A.
        • et al.
        Sequential nucleation and growth of complex nanostructured films.
        Adv Funct Mater. 2006; 16: 335-344
        • Zhang T.
        • Dong W.
        • Jay Kasbohm
        • et al.
        Design and hierarchial synthesis of branched heteromicrostructures.
        Smart Mater Struct. 2006; 15: N46
        • Vayssieres L.
        • Beermann N.
        • Lindquist S.-E.
        • et al.
        Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorods arrays: application to iron (III) oxides.
        Chem Mater. 2001; 13: 233-235
        • Vayssieres L.
        • Guo J.
        • Nordgren J.
        Aqueous chemical growth of a-Fe2O3-α-Cr2O3 nanocomposite thin films.
        J Nanosci Nanotechnol. 2001; 1: 385-388
        • Vayssieres L.
        • Keis K.
        • Hagfeldt A.
        • et al.
        Three-dimensional array of highly oriented crystalline ZnO microtubes.
        Chem Mater. 2001; 13: 4395-4398
        • Vayssieres L.
        On the design of advanced metal oxide nanomaterials.
        Int J Nanotechnol. 2004; 1: 1-41
        • Vayssieres L.
        • Graetzel M.
        Highly ordered SnO2 nanorod arrays from controlled aqueous growth.
        Angewandte Chemie, International Edition. 2004; 43: 3666-3670
      5. Tian ZR, Voigt JA, Liu J, et al. Large oriented arrays and continuous films of TiO2-based nanotubes. J Am Chem Soc 125(41):12384–5.

        • Greene L.E.
        • Law M.
        • Goldberger J.
        • et al.
        Low-temperature wafer-scale production of ZnO nanowire arrays.
        Angewandte Chemie, International Edition. 2003; 42: 3031-3034
        • Julia W.P.H.
        • Tian Z.R.
        • Neil C.S.
        • et al.
        Directed spatial organization of zinc oxide nanorods.
        Nano Lett. 2005; 5: 83-86
        • Huang M.H.
        • Mao S.
        • Feick H.
        • et al.
        Room-temperature ultraviolet nanowires nanolasers.
        Science. 2001; 292: 1897-1899
        • Wang X.
        • Summers C.J.
        • Wang Z.L.
        Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays.
        Nano Lett. 2004; 4: 423-426
        • Dong W.
        • Pang G.
        • Shi Z.
        • et al.
        Oriented organization of shape-contolled nanocrystalline TiO2.
        Mater Res Bull. 2004; 39: 433-438
        • Furneaux R.C.
        • Rigby W.R.
        • Davidson A.P.
        The formation of controlled-porosity membranes from anodically oxidized aluminium.
        Nature. 1989; 337: 147
        • Fleisher R.L.
        • Price P.B.
        • Walker R.M.
        Nuclear tracks in solids.
        University of California Press, Berkeley (CA)1975
        • Tonucci R.J.
        • Justus B.L.
        • Campillo A.J.
        • et al.
        Nanochannel array glass.
        Science. 1992; 258: 783
        • Possin G.E.
        A method for forming very small diameter wires.
        Rev Sci Instrum. 1970; 41: 772
        • Wu C.
        • Bein T.
        Conducting polyaniline filaments in a mesoporous channel host.
        Science. 1994; 264: 1757
        • Fan S.
        • Chapline M.G.
        • Franklin N.R.
        • et al.
        Self-oriented regular arrays of carbon nanotubes and their field emission properties.
        Science. 1999; 283: 512
        • Enzel P.
        • Zoller J.J.
        • Bein T.
        Intrazeolite assembly and pyrolysis of polyacrylonitrile.
        Chem Commun. 1992; 633
        • Guerret-Piecourt C.
        • Le Bouar Y.
        • Loiseau A.
        • et al.
        Relatin between metal electronic structure and morphology of metal compounds inside carbon nanotubes.
        Nature. 1994; 372: 761
        • Ajayan P.M.
        • Stephan O.
        • Redlich P.
        • et al.
        Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures.
        Nature. 1995; 375: 564
        • Despic
        • Parkhuitik V.P.
        Modern aspects of electrochemistry vol. 20.
        Plenum, New York1989
        • Al Mawiawi D.
        • Coombs N.
        • Moskovits M.
        Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size.
        J Appl Physiol. 1991; 70: 4421
        • Foss C.A.
        • Tierney M.J.
        • Martin C.R.
        Template synthesis of infrared-transparent metal microcylinders: comparison of optical properties with the predictions of effective medium theory.
        J Phys Chem. 1992; 96: 9001
        • Patrick H.
        Formation of titanium dioxide nanotube array.
        Langmuir. 1996; 12: 1411-1413
        • Hiroaki Imai
        • Yuko Takei
        • Kazuhiko Shimizu
        Direct preparation of anatase TiO2 nanotubes in porous alumina membranes.
        J Mater Chem. 1999; 9: 2971-2972
        • Zhang S.G.
        Fabrication of novel biomaterials through molecular self-assembly.
        Nat Biotechnol. 2003; 21: 1171-1178
        • Liang L.
        • Liu J.
        • Windisch C.F.
        • et al.
        Angewandte Chemie-International Edition. 2002; 41: 3665-3668
        • Gangopadhyay R.
        • De A.
        Conducting polymer nanocomposites: a brief overview.
        Chem Mater. 2000; 12: 608-622
        • MacDiarmid A.G.
        Nobel Lecture: “Synthetic metals”: A novel role for organic polymers.
        Rev Mod Phys. 2001; 73: 701
        • Doblhofer K.
        • Rajeshwar K.
        Handbook of conducting polymers.
        Marcel Dekker, New York1998 ([Chapter 20])
        • Stejskal J.
        • Gilbert R.G.
        Polyaniline. Preparation of a conducting polymer.
        Pure Appl Chem. 2002; 74: 857-867
        • Martin C.R.
        Nanomaterials: a membrane-based synthetic approach.
        Science. 1994; 266: 1961-1966
        • Zhong W.
        • Deng J.
        • Yang Y.
        • et al.
        Synthesis of large-area three-dimensional polyaniline nanowires networks using a “soft template”.
        Macromolecular Rapid Communications. 2005; 26: 395-400
        • Lu X.
        • Yu Y.
        • Chen L.
        • et al.
        Hollow nanometer-sixed polypyrrole capsules with controllable shell thickness synthesized in the presence of chitosan.
        Polymer. 2005; 46: 5329-5333
        • Qiu H.J.
        • Zhai J.
        • Li S.H.
        • et al.
        Oriented growth of self-assembled polyaniline nanowire arrays using a novel method.
        Advanced Functional Materials. 2003; 13: 925-928
        • Doshi J.
        • Reneker D.H.
        Electrospinning process and applications of electrospun fibers.
        J Electrostatics. 1995; 35: 151
        • Renek D.H.
        • Yarin A.L.
        • Fong H.
        • et al.
        Bending instability of electrically charged liquid jets of polymer solutions in electospinning.
        J Appl Physiol. 2000; 87: 4531
        • He H.X.
        • Li C.Z.
        • Tao N.
        Conductance of polymer nanowires fabricated by a combined eletrodeposition and mechanical break junction method.
        J Appl Phys Lett. 2001; 78: 811-813
        • Lee H.S.
        • Hong J.
        Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability.
        Synth Met. 2000; 113: 115
        • Duchet J.
        • Legras R.
        • Demoustier-Champagne S.
        Chemical synthesis of polypyrrole: structure-properties relationship.
        Synth Met. 1998; 98: 113
        • Garjonyte R.
        • Malinauskas A.
        Amperometric glucose biosensors based on Prussian blue- and polyaniline-glucose oxidase modified electrodes.
        Biosens Bioelectron. 2000; 15: 445
        • Garjonyte R.
        • Malinauskas A.
        Glucose biosensor based on glucose oxidase immobilized in electopolymerized polyprrole and poly(o-phenylenediamine) films on a prussian blue-modified electrode.
        Sens Actuators. 2000; B63: 122
        • Wang J.
        • Lin Y.
        • Chen L.
        Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products.
        Analyst. 1993; 118: 277
        • Ogura K.
        • Endo N.
        • Nakayama M.
        • et al.
        Mediated activation and electroreduction of CO2 on modified electrodes with conducting polymer and inorganic conductor films.
        J Electrochem Soc. 1995; 142: 4026
        • Koncki R.
        • Wolfbeis O.S.
        Composite films of Prussian blue and n-substituted polypyrroles: fabricatin and application to optical determination of pH.
        Anal Chem. 1998; 70: 2544
        • Ikeda O.
        • Yoneyama H.
        Polypyrrole film electrodes electrochemically doped with colloidal Prussian blue.
        J Electroanal Chem. 1989; 165: 323
        • Bartlett P.N.
        • Cooper J.M.
        A review of the immobilization of enzymes in electropolymerized films.
        J Electroanal Chem. 1993; 362: 1-12
        • Jackson A.P.
        • Vincent J.F.V.
        • Turner R.M.
        The mechanical design of Nacre.
        Proc R Soc London Ser B Biol Sci. 1998; 234: 415
        • Belcher A.M.
        • Wu X.H.
        • Christensen R.J.
        • et al.
        Control of crystal phase switching and orientation by soluble mollusc-shell proteins.
        Nature. 1996; 381: 56
        • Sumper M.
        A phase separation model for the nanopattering of diatom biosilica.
        Science. 2002; 295: 2430
        • Yang H.
        • Coombs M.
        • Ozin G.A.
        Mesoporous silica with micrometer-scale designs.
        Adv Mater. 1997; 9: 811
        • Trau M.
        • Yao N.
        • Kim E.
        • et al.
        Microscopic patterning of orientated mesoscopic silica through guided growth.
        Nature. 1997; 390: 674
        • Yang P.
        • Deng T.
        • Zhao D.
        • et al.
        Hierarchially ordered oxides.
        Science. 1998; 282: 2244
        • Yang P.
        • Wirnsberger G.
        • Huang H.C.
        • et al.
        Mirrorless lasing from mesostructured waveguides patterned by soft lithography.
        Science. 2000; 287: 465
        • Doshi D.A.
        • Heusing N.K.
        • Lu M.
        • et al.
        Optically defined multifunctional patterning of photosensitive thin-film silica mesophases.
        Science. 2000; 290: 107
        • Kresge C.T.
        • Leonowicz M.E.
        • Roth W.J.
        • et al.
        Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.
        Nature. 1992; 359: 710
        • Beck J.S.
        • Vartuli J.C.
        • Roth W.J.
        • et al.
        A new family of mesoporous molecular sieves prepared with liquid crystal templates.
        J Am Chem Soc. 1992; 114: 10834
        • Inagaki S.
        • Guan S.
        • Fukushima Y.
        • et al.
        Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks.
        J Am Chem Soc. 1999; 121: 9611
        • Lim M.H.
        • Stein A.
        Dual templating of macroporous silicates with zeolitic microporous frameworks.
        Chem Mater. 1999; 121: 4308
        • Dag O.
        • Yoshina-Ishii C.
        • Asefa T.
        • et al.
        Oriented periodic mesoporous oranosilica (PMO) film with organic functionality inside the channel walls.
        Adv Funct Mater. 2001; 11: 213
        • Lu Y.
        • Fan H.
        • Doke N.
        • et al.
        Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality.
        J Amer Chem Soc. 2000; 122: 5258-5261
        • Guan S.
        • Inagaki S.
        • Ohsuna T.
        • et al.
        Cubic hybrid organic-inorganic mesoporous crystal with a decaoctahedral shape.
        J Am Chem Soc. 2000; 122: 5660
        • Tian Z.R.
        • Liu J.
        • Voigt J.A.
        • et al.
        Hierarchical and self-similar growth of self-assembled crystals.
        Angew Chem Int Ed Engl. 2003; 42: 413
        • Ben-Nissan B.
        Nanoceramics in biomedical applications.
        MRS bull. 2004; 29: 28
        • Samuel I.
        Biomaterials for regenerative medicine.
        MRS bull. 2005; 30: 546
        • Lendlein A.
        • Langer R.
        Biodetgradable, elastic shape-memory polymers for potential biomedical applications.
        Science. 2002; 296: 1673
        • Teng Y.D.
        • Lavik E.
        • Qu X.
        • et al.
        Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells.
        Proc Natl Acad Sci USA. 2002; 99: 3024-3089
        • Niklason L.E.
        Functional Arteries grown in vitro.
        Science. 1999; 284: 489
        • Wald H.L.
        • Georgios S.
        • Lyman M.D.
        • et al.
        Cell seeding in porous transplantation devices.
        Biomaterials. 1993; 14: 270
        • Yannas I.V.
        • Burke J.F.
        • Orgill D.P.
        • et al.
        Wound tissue can utlize a polymeric template to synthesize a functional extension of skin.
        Science. 1982; 215: 174
        • Mooney D.J.
        • Baldwin D.F.
        • Suh N.P.
        • et al.
        Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) with out the use of organic solvents.
        Biomaterials. 1996; 17: 1417
        • Hing K.A.
        • Best S.M.
        • Bonfield W.
        Characterization of porous hydroxyapatite.
        J Mater Sci Mater Med. 1999; 10: 135-145
        • De Oliverira J.F.
        • De Aguiar P.F.
        • Rossi A.M.
        • et al.
        Effect of process parameters on the characteristics of porous calcium phosphate ceramics for bone tissue scaffolds.
        Int Soc Art Org. 2003; 27: 406-411
        • Bergman R.M.
        Innovations in biomaterials: achievements and opportunities.
        MRS bull. 2005; 30: 540
        • Bucholz R.W.
        • Carlton A.
        • Holmes R.E.
        Hydroxyapatite and tricalcium phosphate bone graft substitutes.
        Orthop Clin North Am. 1987; 18: 323-334
        • Hill P.A.
        Bone remodeling.
        Br J Orthod. 1998; 25: 101-107
        • Martin R.B.
        Bone as a ceramic composite material.
        Mater Sci Forum. 1999; 293: 5-16
        • Nunes C.R.
        • Simske S.J.
        • Sachdeva R.
        • et al.
        Long term ingrowth and appositions of porous hydroxyapatite implants.
        J Biomed Mater Res. 1997; 36: 560-563
        • Heise
        • Osborn J.F.
        • Duwe F.
        Hydroxyapatite ceramic as a bone substitute.
        Int Orthop. 1990; 14: 329-338
        • De Groot K.
        Bioceramics consisting calcium phosphate slats.
        Biomaterials. 1980; 1: 47-50
        • Cerroni L.
        • Filocamo R.
        • Fabbri M.
        • et al.
        Growth of osteoblast like cells on porous hydroxyapatite ceramics: an in vitro study.
        Biomol Eng. 2002; 19: 119-124
        • Sepulveda P.
        Gelcasting foams for porous ceramics.
        Am Ceram Soc Bull. 1997; 76: 61-65
        • Lyckfeldt O.
        • Ferreira J.M.F.
        Processing of porous ceramics by a new direct consolidation technique.
        J Eur Ceram Soc. 1998; 18: 131-140
        • Woyansky J.S.
        • Scott C.E.
        • Minnear W.P.
        Processing of porous ceramics.
        Am Ceram Soc Bull. 1992; 71: 1674-1681
        • Sepulveda P.
        • Binner J.G.P.
        • Rogero S.O.
        • et al.
        Production of porous hydroxapatite by the gel-casting of foams and cytotoxic evaluation.
        J Biomed Mater Res. 2000; 50: 27-34
        • Chu T.M.G.
        • Halloran J.W.
        • Hollister S.J.
        • et al.
        Hydroxyapatite implants with designed internal architecture.
        J Mater Sci. 2001; 12: 471-478
        • Jingwang Li
        • Tian J.
        Calculated influences of starting materials composition on carbothermal nitridation synthesis of silicon nitried/silicon carbide composite powders.
        J Mater Sci. 2001; 36: 3061-3066
        • Zhang Y.
        • Zhang M.
        Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants.
        J Biomed Mater Res. 2002; 61: 1-8
        • Ramay H.R.
        • Zhang H.
        Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods.
        Biomaterials. 2003; 24: 3293-3302
        • Paunesku T.
        • Rajh T.
        • Wiederrecht G.
        • et al.
        Biology of TiO2 – oligonucleotide nanocomposites.
        Nat Mater. 2003; 2: 343-346
        • Gabriel A.S.
        • Catherine C.
        • Krista L.N.
        • et al.
        Selective Differentiation of neural progenitor cells by high-epitope density nanofibers.
        Science. 2004; 303: 1352-1355